
A Prototype for Compositional Probabilistic Infectious Disease
Modelling

Samuel P. C. Brand1 Samuel Abbott2,*

2025-10-08

Abstract

Recent outbreaks of Ebola, COVID-19 and mpox have demonstrated the value of modelling
for synthesising data for rapid evidence to inform decision making. Effective models require
integration of expert domain knowledge from clinical medicine, environmental science, behavioural
research, and public health to accurately capture transmission processes, yet current modelling
approaches create barriers to this integration. Methods used to synthesise available data broadly
fall into pipeline approaches that chain separate models together, or joint models that are often
monolithic and difficult to adapt. These barriers have prevented advances across multiple settings
where models could have provided actionable insights. Composable models where components
can be reused across different contexts and combined in various configurations whilst maintaining
statistical rigour could address these limitations. Beyond enabling modellers to build models
more efficiently, standardised component interfaces provide structured environments for large
language models to compose and validate epidemiological models. In this work, we start by
outlining the key requirements for a composable infectious disease modelling framework and
then present a prototype that addresses these requirements through composable epidemiological
components built on Julia’s type system and Turing.jl. Our approach enables “LEGO-like”
model construction where complex models emerge from composing simpler, reusable components.
Through three case studies using the prototype, we show how components can be reused across
different models whilst maintaining statistical rigour. The first replicates a COVID-19 analysis
for South Korea using renewal processes with time-varying reproduction numbers. The second
extends these components with reporting delays and day-of-week effects for real-time nowcasting
applications. The third integrates ODE solvers for compartmental disease transmission models
applied to influenza outbreak data. Across all case studies, the same core components combine
differently to address distinct epidemiological questions. We explore other potential options and
compare them to our proposed approach. The prototype demonstrates promise but future work
is needed to solve remaining composability challenges, expand the component library, integrate
bridges to existing epidemiological software ecosystems, and explore opportunities for large
language model assisted model construction in resource-constrained settings.

1 Center for Forecasting and Outbreak Analysis; Centers for Disease Control, United States of

America
2 Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical

Medicine, United Kingdom

* Correspondence: Samuel Abbott <sam.abbott@lshtm.ac.uk>

1

mailto:sam.abbott@lshtm.ac.uk


1 Introduction

Recent outbreaks of Ebola, COVID-19 and mpox have demonstrated the value of modelling for

synthesising data for rapid evidence to inform decision making [1]. Infectious diseases spread through

complex interactions between biology, human behaviour, economic factors, and environmental

conditions that must all be understood to control transmission effectively. Effective models require

integration of expert domain knowledge from clinical medicine, environmental science, behavioural

research, and public health to accurately capture these multifaceted transmission processes, yet

current modelling frameworks create barriers to this integration. Individual-level data such as viral

loads, biomarkers, genomic sequences, and clinical observations are routinely ignored or aggregated

when informing population-level models, losing information that could improve decisions. These

barriers have prevented advances in settings where models could have provided actionable insights

such as early outbreak analysis, wastewater surveillance, phylodynamics, clinical biomarkers, pooled

testing, and large-scale clinical datasets. The next infectious disease threat is unpredictable and

may be exacerbated by climate change [2], requiring adaptable response capabilities that can rapidly

incorporate diverse data sources and domain expertise.

Methods used to synthesise available data in real time broadly fall into two classes: either combining

results from multiple, smaller models calibrated in isolation (the pipeline approach, e.g., [3]), or

representing a single model tuned to the specific scenario (the joint model approach, e.g., [4,5]).

Both approaches have downsides. Pipeline approaches combine results from separate models without

uncertainty propagation, leading to loss of detail and statistical rigour [6]. Joint approaches use

single monolithic models that, whilst able to integrate multiple processes and data streams, are too

complex to enable transfer to other settings or extension with additional model components. To

adapt or extend such models, analysts need to fully comprehend all parts of the corresponding model

and code, creating barriers to sharing methodology and leading to inefficient re-implementation when

parts of a model could, in principle, be re-used. Attempts to include insights from environmental

scientists, economists, or behavioural researchers typically result in models that are either too

complex to use practically or too simplified to capture valuable expertise. This prevents effective

integration of expertise across disciplines. Transfer of methodology between outbreak events has

proven difficult, with each posing unanticipated challenges that existing tools cannot accommodate.

Whilst large language models offer potential to assist with model construction, current monolithic

approaches lack the structured component interfaces and validation frameworks needed for such

2



systems to compose models reliably.

Recent developments in computational statistics and scientific computing demonstrate the poten-

tial for composable approaches where components can be reused across different contexts and

combined in various configurations whilst maintaining statistical rigour that could address these

limitations. Advances in Turing.jl have introduced submodel interfaces that enable composable

probabilistic programming, providing a pathway for epidemiological model composition, though ini-

tial epidemiological applications revealed interoperability challenges [7,8]. Category theory provides

one mathematical framework for this composability through operadic composition in hierarchical

model construction, as applied in the AlgebraicJulia ecosystem [9]. Alternative approaches to

compositional modelling include the SciML ecosystem’s [10] symbolic-numeric framework, where

ModelingToolkit.jl [11] and Catalyst.jl [12] use acausal equation-based modelling with auto-

mated symbolic transformations to support mixed equation types including differential-algebraic

equations, partial differential equations, and stochastic differential equations through unified inter-

faces. HydroModels.jl [13] demonstrates compositional hydrological modelling with differentiable

neural-enhanced components, whilst SpeedyWeather.jl uses an interactive domain-specific language

approach for “LEGO-like” atmospheric modelling with modular component assembly [14]. The

key insight underlying these approaches is the separation of structural syntax, which defines valid

compositions, from computational semantics, enabling modularity and independence of components

whilst maintaining mathematical rigour.

Figure 1 demonstrates how these compositional principles could enable component reuse across

different epidemiological applications. Three example applications wastewater surveillance, biomarker

modelling, and early outbreak analysis each compose models from components of different types. The

schematic also highlights two examples of component reuse. The incubation period model appears in

all three applications, and the within-host viral kinetics model is shared between biomarker modelling

and wastewater surveillance. This highlights how components developed for one application could

be incorporated into others when they share common underlying processes.

This paper presents a prototype that combines the modularity of pipeline approaches with the

statistical rigour of joint models through composable epidemiological components. Our approach

enables “LEGO-like” model decisions through standardised interfaces similar to those used in

SpeedyWeather.jl [14]. The prototype supports composability beyond ordinary differential equa-

tions, accommodating mixed equation types and the potential for different computational backends.

3



Figure 1: Demonstration of composability showing how three applications share common components.
Colours correspond to component types: infection processes (blue), statistical processes (orange),
infection modifiers (yellow), epidemiological latent processes (purple), observation modifiers (red),
and observation models (green). Two shared submodels are highlighted with purple borders and
background fill: the Incubation Period model (reused across all applications) and the Within-host
Viral Kinetics model (shared between Biomarker Modelling and Wastewater Surveillance).

We implement this as a domain-specific language operating intended to be implemented as optional

package extensions. We demonstrate our approach using an autoregressive model example to

illustrate the proposed compositional pattern and component swapping capabilities. Through three

case studies using the prototype, we show how components can be reused across different models:

the first is inspired by [15]; the second reuses components from the first, along with new elements,

inspired by [16]; the third is inspired by [17], again reusing components, alongside the use of an

ODE. Finally, we discuss alternative design approaches, evaluate the strengths and limitations of

our compositional approach, and identify key areas for future development.

2 Prototype Implementation

2.1 Requirements for Composable Infectious Disease Modelling

Modelling infectious disease dynamics requires quantifying uncertainty at every level because

decisions must account for incomplete knowledge about individual infection risk, transmission

dynamics, and observation processes. A clear separation between distinct model components,

infection processes, observation processes, and latent dynamics is also key as these allows reasoning

on each of these components separately. Because diseases affect populations heterogeneously across

4



age, location, and risk groups, the framework needs to be able to support arbitrary stratification

schemes for all components. These stratified models must also remain data-agnostic as this allows the

model to be generalised to different datasets, tested based on just its prior specification, and used for

forecasting. Similarly, the book work of supporting multiple strata needs to be abstracted from the

user to make the system easier to use but at the same time they need to be able to model relationships

between strata to support partial pooling of parameters for sparse data settings. To allow for models

to be validated, the framework must support nesting models within models and programming over

model structure itself, allowing simple components to compose into sophisticated models while

remaining individually interrogable for debugging, validation, and mechanistic understanding. This

compositional approach requires a clear, concise modelling language so that it can be used by a wide

pool of users and so that model specifications can be written quickly but with clarity. Supporting

modern inference methods is important so that complex models can be fit and this necessitates

gradient computation throughout via automatic differentiation. It is also important to allow for

a wide range of inference methods so that the best approach for a given model/data combination

can be used. This means supporting abstract back-ends that seamlessly switch between inference

approaches.

We also need to have model components that encapsulate both structure and prior distributions so

that domain experts can contribute specialised knowledge: a virologist’s understanding of within-

host dynamics, an epidemiologist’s of contact patterns, a clinician’s of disease progression insights

without reviewing the entire modelling framework. Standardised interfaces between components

are needed to allow individual components to work together, to support handling of multiple

strata, and to allow for proper uncertainty propagation. Such interfaces also enable large language

models to serve as model construction agents, composing models from component libraries whilst

validation methods ensure statistical rigour [18]. As there are a range of different potential ways

to express infectious disease models including ordinary differential equations, agent-based models,

network models, stochastic processes, and discrete time models these all need to be supported

both independently and in combination. Importantly, the design must enable incremental adoption

without requiring complete rebuilds of existing models, and components should remain functional

as standalone tools outside the compositional framework to maximise their utility and adoption.

Finally, we need a framework that can be composed with out of domain approaches and expertise,

such as neural networks, Gaussian processes, and other machine learning approaches.

5



2.2 Our approach

Meeting these requirements requires programming with probabilities, for which probabilistic pro-

gramming languages are designed. We also need a probabilistic programming language that supports

automatic differentiation for modern inference, the ability to program over model structure itself

to enable model nesting and composition, and access to as wide an ecosystem as possible to avoid

lock-in and enable integration with existing scientific computing tools. As far as we are aware, only

probabilistic programming languages built in Julia [19] provide the metaprogramming capabilities

needed to create domain-specific abstractions that can handle arbitrary stratification, standardised

interfaces between components, and programming over the model structure. Among Julia’s options,

Turing.jl [8] best meets our requirements with mature submodel support for nesting models within

models, extensive inference algorithm choices, and it’s implementation as a light abstraction layer on

top of the wider Julia ecosystem. Additional benefits of Julia include eliminating the two-language

problem, leveraging multiple dispatch for clean component composition, and accessing the mature

SciML ecosystem [10] for differential equations and other scientific computing tools.

Our approach uses a two-layer architecture with high-level domain-specific language (DSL) for

epidemiological modelling and a low-level implementation using Turing.jl (though importantly we

are not locked in to this choice as the DSL is agnostic of the backed used). This separation enables

incremental adoption without rebuilding existing models to use our DSL, with all components

remaining functional as standalone tools outside the compositional framework. The domain-

specific language layer provides clear, concise model specification using epidemiological concepts,

enabling domain experts to contribute components encapsulating their specialised knowledge without

understanding the full framework. The backend layer aims to handle the automated bookkeeping of

stratification, interface validation, and uncertainty propagation whilst supporting multiple inference

approaches and auto differentiation options by leveraging the Turing.jl and wider Julia ecosystems.

2.3 Domain-Specific Language Structure

Our prototype domain-specific language builds on Julia’s type system to enable composable epi-

demiological modelling through two key design patterns. First, abstract types define interfaces

that implementations must follow, analogous to contracts specifying what operations a model

component must support rather than how it implements them. All model components inherit

from a parent AbstractModel type, establishing a common foundation whilst allowing specialised

6



behaviour through subtypes. Second, structures contain other structures as fields (a struct-in-struct

pattern), allowing complex models to be built by nesting simpler components. This pattern enables

models to be assembled like building blocks whilst maintaining clear boundaries between different

epidemiological processes.

We organise model components into three abstract type hierarchies, each of which inherits from

AbstractModel, corresponding to distinct epidemiological processes. AbstractEpiModel represents

infection generation processes such as renewal models or ordinary differential equation transmission

dynamics. AbstractLatentModel captures time-varying parameters and unobserved processes

such as changing reproduction numbers or reporting rates, implemented through structures like

autoregressive processes, random walks, or moving averages. AbstractObservationModel links

latent states to observed data by encoding measurement processes such as reporting delays, aggre-

gation over time periods, and observation error distributions. These structures are data-agnostic,

specifying what to do when they encounter data rather than containing data themselves, making

model definitions reusable across different datasets and scenarios. Each hierarchy supports multiple

concrete implementations that can be swapped to compare modelling assumptions whilst keeping

other components fixed.

Models can compose across these hierarchies rather than being restricted to combining components

within a single type. For example, an observation model can contain a latent process as a field to

represent time-varying ascertainment, or wrap another observation model to add reporting delays.

This cross-hierarchy composition extends the building block analogy to include more complex

models. For instance, we can construct a delay convolution observation model, LatentDelay, using

an underlying observation model and a delay distribution model.

The EpiProblem structure is a top-level container assembling these components into a complete

epidemiological model. It holds an infection process (epi_model), a latent process (latent_model),

an observation process (observation_model), and a time span for inference or simulation. Structures

can be modified in place using tools like Accessors.jl, enabling both model iteration and patterns

such as partially pooled models that update low-level priors based on grouping structures. The

abstract type system enables shared methods across all model components, such as print methods

(shown below) for displaying model specifications or functions for visualising model directed acyclic

graphs. This approach also allows for the creation of mappings between submodels such as one to

one, one to many, and many to many mappings so that, for example, a single infection process can

7



be linked to multiple observations models by specifying a mapping model.

To demonstrate the structure and use of AbstractLatentModels, we start with an autoregressive

order two (AR(2)) process, which mathematically is:

𝑍𝑡 = 𝜌1𝑍𝑡−1 + 𝜌2𝑍𝑡−2 + 𝜖𝑡, 𝜖𝑡 ∼ Normal(0, 𝜎)

In our prototype DSL, this is defined using the AR struct. We use priors based on [20] which we will

reuse in Section 3.1. Prior distributions are specified using Distributions.jl [21], the standard

probability distributions package in the Julia ecosystem, which provides a unified interface for

probability distributions that is interoperable with both our framework and Turing.jl.

using EpiAware, Distributions

ar2 = AR(;

damp_priors=[truncated(Normal(0.4, 0.2), 0, 1),

truncated(Normal(0.1, 0.05), 0, 1)],

init_priors=[Normal(0, 0.2), Normal(0, 0.2)],

�_t=HierarchicalNormal(std_prior=HalfNormal(0.1))

)

This constructor has created the following struct definition.

ar2

AR(damp_prior = Product(Truncated(0.4, 0.2, 0.0, 1.0)),

init_prior = TuringScalMvNormal([0.0, 0.0], 0.2),

p = 2,

�_t = HierarchicalNormal(mean = 0.0,

std_prior = HalfNormal(0.1),

add_mean = false))

Another common latent model is the moving average model

𝑍𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1, 𝜖𝑡 ∼ Normal(0, 𝜎)

The MA struct defines this in the same way that the AR did for the AR process.

8



ma1 = MA(;

�_priors=[truncated(Normal(0.0, 0.2), -1, 1)],

�_t=HierarchicalNormal(std_prior=HalfNormal(0.1))

)

A popular combination of these models is the autoregressive moving average (ARMA) model that

can have different orders for both the AR and MA components. An ARMA(2,1) can be defined as:

𝑍𝑡 = 𝜌1𝑍𝑡−1 + 𝜌2𝑍𝑡−2 + 𝜖𝑡 + 𝜃𝜖𝑡−1

In our DSL this can be represented as a composition of the AR and MA structs by updating the

AR error term:

using Accessors

arma21 = @set ar2.�_t = ma1

The result of this step has been to update the ar2 struct so that the definition of the moving average

model is nested inside it.

arma21

AR(damp_prior = Product(Truncated(0.4, 0.2, 0.0, 1.0)),

init_prior = TuringScalMvNormal([0.0, 0.0], 0.2),

p = 2,

�_t = MA(� = Product(Truncated(0.0, 0.2, -1.0, 1.0)),

q = 1,

�_t = HierarchicalNormal(mean = 0.0,

std_prior = HalfNormal(0.1),

add_mean = false)))

Similarly, autoregressive integrated moving average (ARIMA) models extend ARMA by adding

differencing operations that transform the series

Δ𝑍𝑡 = 𝑍𝑡 − 𝑍𝑡−1

9



So that the ARIMA(2,1,1) model is defined as an ARMA(2,1) model for the first order differences:

Δ𝑍𝑡 = 𝜌1Δ𝑍𝑡−1 + 𝜌2Δ𝑍𝑡−2 + 𝜖𝑡 + 𝜃𝜖𝑡−1

We compose the ARMA model with a differencing operation using the DiffLatentModel wrapper:

arima211 = DiffLatentModel(arma21, Normal(0, 0.2); d=1)

Alternatively, EpiAware provides an arima() constructor function that simplifies this specification.

Other latent models extend modelling options through combining models additively, multiplicative

scaling, and piecewise processes. This approach enables representation of arbitrary latent processes

through composition.

2.4 Backend Implementation: Turing Interface

Our DSL translates to Turing models through generate functions that dispatch on ab-

stract type hierarchies. Each abstract type (AbstractLatentModel, AbstractEpiModel,

AbstractObservationModel) has a generate function interface that concrete model types must

implement a method to dispatch upon. When a generate function receives a model component,

Julia’s multiple dispatch automatically selects the appropriate implementation based on the

component’s type, producing Turing.jl [8] code using the @model macro. Unit tests are used

to ensure concrete implementations satisfy interface requirements, enabling all components to

interoperate correctly regardless of which specific model types are composed together. This

approach means new model types integrate seamlessly without modifying existing code, and users

can swap components to compare modelling assumptions whilst keeping other parts of the model

fixed.

The generated Turing models serve dual purposes: simulation by sampling from prior distributions,

or inference by conditioning on observed data and applying Turing’s suite of algorithms including

gradient-based methods like the No U-Turn Sampler (NUTS) [22]. These are standard Turing models

with no special constraints beyond those imposed by the Turing.jl framework itself, supporting all

DynamicPPL.jl operations such as parameter fixing, model conditioning, and posterior predictive

sampling. Generated components can be used directly as standalone models or nested within other

Turing models using the @submodel macro, enabling incremental adoption where only parts of a

10



model use the compositional framework whilst other parts use custom Turing.jl.

Many computational components are backend-agnostic, containing no probabilistic program-

ming constructs and therefore portable to other frameworks. For example, we use a common

pattern, accumulate_scan, which builds on the base accumulate function to model iterative

temporal processes through step functions. These step functions are structs built on the

AbstractAccumulationStep interface that implement a callable defining the single-step update

rule. Mathematical utilities such as functions for converting between reproduction numbers and

growth rates, discretising continuous delay distributions, and reparameterising observation error

models are similarly backend-agnostic. This separation enables a package extension pattern where

standard Julia packages provide domain-specific functionality whilst the compositional layer is

added as an optional extension, allowing users to adopt the framework incrementally without

requiring their entire workflow to commit to the compositional approach.

Returning to our example from the DSL section, the autoregressive process can be mapped from

its high-level representation to a Turing model using the generate_latent function and multiple

dispatch, which generates the following Turing.jl:

@model function EpiAwareBase.generate_latent(latent_model::AR, n)

p = latent_model.p

@assert n>p "n must be longer than order of the autoregressive process"

ar_init ~ latent_model.init_prior

damp_AR ~ latent_model.damp_prior

@submodel �_t = generate_latent(latent_model.�_t, n - p)

ar = accumulate_scan(ARStep(damp_AR), ar_init, �_t)

return ar

end

The key line @submodel �_t = generate_latent(latent_model.�_t, n - p) enables composition

by delegating to whatever error model was provided. The AR dynamics are implemented through a

custom accumulation step that maintains the autoregressive state.

11



function (ar::ARStep)(state, �)

new_val = dot(ar.damp_AR, state) + �

new_state = vcat(state[2:end], new_val)

return new_state

end

This step function works with accumulate_scan to build the AR series by applying the autoregressive

equation at each time step. The MA model has a similar structure with its own internal step function.

The accumulate_scan pattern enables composable iteration steps, allowing complex processes like

renewal models with susceptible depletion to be built by composing simple step operations. This

design means we only need to write the single-step operation without worrying about the iteration

process, making components more modular and reusable.

The full ARIMA(2,1,1) model we defined in the DSL section can then be generated using the same

approach, producing the following Turing.jl.

@model function EpiAwareBase.generate_latent(latent_model::DiffLatentModel, n)

d = latent_model.d

@assert n>d "n must be longer than d"

latent_init ~ latent_model.init_prior

@submodel diff_latent = generate_latent(latent_model.model, n - d)

return _combine_diff(latent_init, diff_latent, d)

end

The DiffLatentModel’s @submodel diff_latent = generate_latent(latent_model.model, n

- d) calls the ARMA model, which in turn calls its composed AR and MA components, then

applies differencing through cumulative summing. This recursion through @submodel enables

arbitrary composition while maintaining separation between components.

To demonstrate fitting these submodels we first create a model that uses our ARIMA(2,1,1) model

as submodel combining it with a normal observation error process.

12



using DynamicPPL, Turing, LinearAlgebra

@model function arima_with_obs(arima_spec, n_timesteps)

@submodel Z_t = generate_latent(arima_spec, n_timesteps)

�_obs ~ truncated(Normal(0.0, 0.001), 0, Inf)

y_obs ~ MvNormal(Z_t, �_obs * I)

return y_obs

end

We can then generate synthetic data with fixed parameters which we sample from the prior

distribution using the rand, and fix functions and calling the model to simulate the observations.

We first define the model.

n_timesteps = 20

gen_model = arima_with_obs(arima211, n_timesteps)

Then sample from it,

simulated_params = rand(gen_model)

Now we have parameters we can simulated some data using the generative model by fixing the

random variables using the sampled parameters and the fix function. We can then call it, like any

normal function, to get simulated observations for y.

fixed_model = fix(gen_model, simulated_params)

y_observed = fixed_model()

For inference, we condition on the generative model using simulated observations and the condition

function or here the equivalent | notation. Now we have a model conditioned on data we can fit

it using our choice of approach supported by Turing.jl. Here we decide to use the No-U-turn

sampler (a popular variant of MCMC).

conditioned_model = gen_model | (; y_obs = y_observed)

chains = sample(conditioned_model, NUTS(), MCMCThreads(), 2000, 4)

We can then compare our posterior distributions to the true sampled values from our ARIMA(2, 1,

1) model using PairPlots.jl [23] with the CairoMakie.jl [24] backend for visualisation (Figure 2).

13



The posterior distributions recover the simulated parameter values.

Figure 2: ARIMA(2,1,1) posterior density showing pairwise relationships between model parameters
(AR damping coefficients and MA coefficient) with true parameter values (blue) used to generate
the synthetic data. The posterior distributions recover the true parameter values, demonstrating
the model’s ability to perform inference on autoregressive integrated moving average processes.

3 Case Studies

We demonstrate how our prototype compositional modelling DSL can recreate and extend existing

epidemiological models. Each case study shows how complex models are built by composing reusable

components, validating their behaviour through prior predictive checks, and fitting them to real

data. The examples progress from simple renewal models to more complex observation processes

14



that account for reporting delays and temporal effects.

All code and data for reproducing the analyses in this paper are available at: https://github.com/

EpiAware/PrototypeCompositionalProbablisticInfectiousDiseaseModelling.

3.1 On the derivation of the renewal equation from an age-dependent branching

process: an epidemic modelling perspective

In On the derivation of the renewal equation from an age-dependent branching process: an epidemic

modelling perspective, Mishra et al (2020) [20] demonstrate the mathematical correspondance between

age-dependent branching processes and time-since-infection epidemiological models, as a renewal

model with time-varying reproduction number 𝑅𝑡. Renewal models use the renewal equation to

model how new infections arise from previous infections, weighted by the generation time distribution

(or serial interval) [25]. This is analogous to an autoregressive process where the autoregressive

coefficients have epidemiological meaning rather than being estimated parameters. They show how

solutions to the renewal equation, when combined with a negative binomial observation model, define

a Bayesian hierarchical framework for inference on reported case time series data, demonstrating

this on test-confirmed cases of COVID-19 in South Korea.

3.1.1 Data

Mishra et al used daily reported test-confirmed cases of COVID-19 in South Korea between January

to July 2020. This data is curated by the covidregionaldata package, but we have saved the

South Korean data locally.

using Chain, CSV, DataFramesMeta, Dates

datapath = "data/south_korea_data.csv"

south_korea_data = @chain datapath begin

CSV.read(DataFrame)

(y_t = _.cases_new, dates = _.date)

end

3.1.2 Model

Our model is inspired by Mishra et al and uses a log-scale time-varying reproductive number log 𝑅𝑡

modelled as an AR(2) process, which in turn specifies the latent infections 𝐼𝑡 as a solution to

15

https://github.com/EpiAware/PrototypeCompositionalProbablisticInfectiousDiseaseModelling
https://github.com/EpiAware/PrototypeCompositionalProbablisticInfectiousDiseaseModelling
https://github.com/epiforecasts/covidregionaldata


the renewal equation conditional on the trajectory of log 𝑅𝑡. The latent infection process is then

linked directly to reported cases 𝐶𝑡 on matching days using a negative binomial link distribution.

The key difference from Mishra et al is in the initialization. They seed the renewal equation with

importations (independent daily effects 𝜇𝑡 ∼ Exponential(0.5)), whilst we initialize by solving for

the growth rate corresponding to the initial reproduction number and extrapolating backwards

without allowing for ongoing importations.

𝜌1, 𝜌2, 𝑍0, 𝑍−1, 𝐼0, 𝜎, 𝜙 ∼ 𝜋(⋅),

𝜖𝑡 ∼ Normal(0, 𝜎) i.i.d ∀𝑡,

𝑍𝑡 = 𝜌1𝑍𝑡−1 + 𝜌2𝑍𝑡−2 + 𝜖𝑡, 𝑡 = 1, 2, 3, …

𝑅𝑡 = exp(𝑍𝑡),

𝑟 solves 𝐺(𝑟) = 1/𝑅1,

𝐼𝑡 = 𝐼0𝑒𝑟𝑡, 𝑡 = 0, −1, −2, −3, −𝑛 + 1,

𝐼𝑡 = 𝑅𝑡 ∑
𝑠≥1

𝑔𝑠𝐼𝑡−𝑠, 𝑡 = 1, 2, 3, … ,

𝑦𝑡 ∼ NegBin(𝐼𝑡, 𝜙), 𝑡 = 1, 2, 3, … .

Where 𝜋 is a prior distribution for the hyperparmeters of the AR(2) model, initial states 𝑍0, 𝑍−1, the

autoregressive coefficients 𝜌1, 𝜌2 and innovations standard deviation 𝜎, along with initial condition

value for the latent infections 𝐼0 and observation overdispersion 𝜙. 𝑔𝑡 is the generation distribution

probability mass function (pmf). 𝑟 is the growth rate determined by the by 𝑅1 = exp(𝑍1) using the

implicit relationship [26].

𝐺(𝑟) = ∑
𝑗≥1

𝑔𝑗 exp(−𝑟𝑗) = 1/𝑅1.

This means that we determine the initial condition of the latent infecteds before 𝑡 = 0,

𝐼−1, 𝐼−2, … , 𝐼−𝑛+1 jointly with sampling 𝑅1 where 𝑛 is the maximum support value of the 𝑔𝑡 pmf.

3.1.2.1 Latent Model

We reuse the AR(2) model ar2 defined in Section 2.3, which has the appropriate priors from Mishra

et al. Prior predictive samples (Figure 3 A) show that a priori these priors assign a few percent

chance of achieving very high 𝑅𝑡 values, i.e. 𝑅𝑡 ∼ 10 − 1000 is not excluded.

16



3.1.2.2 Infection Generating Process

The renewal equation requires a discrete generation time pmf 𝑔𝑡. Our prototype provides a

constructor that converts continuous distributions into the required discrete pmf using double

interval censoring [27]. This is called inside the EpiData struct which we use to define the expected

model specific input data. Mishra et al used a Gamma(6.5, 0.62) serial interval distribution,

truth_SI = Gamma(6.5, 0.62)

model_data = EpiData(gen_distribution=truth_SI)

Figure 3 D compares the discretized generation interval with the underlying continuous distribution.

As expected the observed discrete generation interval differs from the underlying continuous

distrbution due to the double censoring process.

As in the earlier example, we define our renewal model using a specialised struct, Renewal. This

requires the discretized generation time (from model_data) and an initialisation prior. We use a

lognormal prior for the initial latent infections as it has a skewed right tail allow some weight on

large initial values.

log_I0_prior = Normal(log(1.0), 0.1)

renewal = Renewal(model_data; initialisation_prior=log_I0_prior)

This results in the following model structure.

renewal

Renewal(

data =

EpiAware.EpiInfModels.EpiData{Float64, typeof(exp)}([0.026663134095601056, 0.14059778064943784, 0.2502660305615846, 0.24789569560506844, 0.1731751163417783, 0.09635404000022223, 0.04573437575216367, 0.019313826994143808], 8, exp),

initialisation_prior = Normal(0.0, 0.1),

recurrent_step =

EpiAware.EpiInfModels.ConstantRenewalStep{Float64}([0.019313826994143808, 0.04573437575216367, 0.09635404000022223, 0.1731751163417783, 0.24789569560506844, 0.2502660305615846, 0.14059778064943784, 0.026663134095601056]))

To demonstrate the infection model independently, we define a fixed 𝑅𝑡 trajectory that decreases

from 3 to 0.5 over 50 days and pass this to the generate_latent_infs function which, like the

generate_latent function, relies on multiple dispatch to contruct the model that the struct it is

passed defines.

17



Rt = [0.5 + 2.5 / (1 + exp(t - 15)) for t in 1:50]

renewal_mdl = generate_latent_infs(renewal, log.(Rt))

The implied distribution of 𝐼𝑡 trajectories conditional on this 𝑅𝑡 trajectory can then be sampled

independently of other model components (Figure 3 B). As expected this gives us a “classical”

outbreak like dynamic with infection incidence initially increasing exponentially, the rate of growth

slowing over time, and then finally the infection incidence “turning over”.

The full infection generating process, that is the model defined in Section 3.1 without the link to

case data, can be constructed by passing samples of 𝑍𝑡 into the renewal model sampler.

3.1.2.3 Observation Model

In Mishra et al the overdispersion parameter 𝜙 sets the relationship between the mean and variance

of the negative binomial errors. We default to a prior on √1/𝜙 (referred to as the cluster factor)

because this quantity is approximately the coefficient of variation of the observation noise and,

therefore, is easier to reason on a priori beliefs. A prior for 𝜙 was not specified in Mishra et al, so

we use √1/𝜙 ∼ HalfNormal(0.1).

negbin = NegativeBinomialError(cluster_factor_prior=HalfNormal(0.1))

As with the latent model, we can generate a Turing.jl model conditional on a fixed latent infection

trajectory. Here we simulated this to look like an outbreak with a symmetrical growth and decay

phase.

I_t = [1000 * exp(-(t - 15)^2 / (2 * 4)) for t in 1:30]

negbin_mdl = generate_observations(negbin, missing, I_t)

Here we use a missing argument to indicate observed variables that are to be sampled rather than

to be used to accumulate log posterior density. Prior predictive samples (Figure 3 C) show the

dispersion around the mean implied by our choice of prior.

3.1.3 Fitting to Data

We now compose the three model components into an EpiProblem, which defines the complete

generative model for the time range tspan.

18



tspan = (45, 80)

mishra = EpiProblem(epi_model = renewal,

latent_model = ar2,

observation_model = negbin,

tspan = tspan)

We create training data by subsetting the full data to match tspan.

training_data = @chain south_korea_data begin

@set _.y_t = _.y_t[first(tspan):last(tspan)]

@set _.dates = _.dates[first(tspan):last(tspan)]

end

As a last step before fitting the model, we generate a new Turing.jl model using

generate_epiaware, the EpiProblem we just defined, and our training data.

using Turing

mishra_mdl = generate_epiaware(mishra, training_data)

Following the same compositional pattern as our modelling DSL, we also support composing inference

approaches using EpiMethod, which, for example, can combine pre-sampling steps with sampling

algorithms. We use the No U-Turns (NUTS) sampler with batched implementation of pathfinder

variational inference [28] that returns the single pathfinder route with maximum estimated evidence

lower bound to estimate the intialise the sampler.

using ReverseDiff

inference_method = EpiMethod(

pre_sampler_steps=[ManyPathfinder(nruns=5, maxiters=100)],

sampler=NUTSampler(

target_acceptance=0.9,

adtype=AutoReverseDiff(compile=true),

ndraws=1000,

nchains=4,

mcmc_parallel=MCMCThreads(),

nadapts=1000)

19



)

We now need to combine our inference approach with our generated model. We can do this using

the apply_method.

mishra_results = apply_method(mishra_mdl,

inference_method,

training_data

)

This gives the following posterior estimates for our model parameters.

summarystats(mishra_results.samples)

Summary Statistics

parameters mean std mcse ess_bulk ess_tail �

Symbol Float64 Float64 Float64 Float64 Float64 Flo �

latent.ar_init[1] 0.0637 0.2005 0.0064 986.0895 451.4509 1. �

latent.ar_init[2] 0.0307 0.1859 0.0051 1333.7954 870.6752 1. �

latent.damp_AR[1] 0.6414 0.0844 0.0052 269.8427 403.3955 1. �

latent.damp_AR[2] 0.1722 0.0462 0.0016 863.9201 726.0120 0. �

latent.std 0.4962 0.0601 0.0039 229.7914 538.8243 1. �

latent.�_t[1] 0.7201 0.8415 0.0324 693.9246 604.9609 1. �

latent.�_t[2] 1.1493 0.8221 0.0300 747.9757 621.9631 1. �

latent.�_t[3] 1.5750 0.8353 0.0239 1240.9136 849.9880 1. �

latent.�_t[4] 1.2829 0.8452 0.0268 1005.2694 720.9283 1. �

latent.�_t[5] 2.4581 0.7840 0.0306 646.9801 596.0810 1. �

latent.�_t[6] 2.4990 0.7310 0.0280 671.5462 615.6128 0. �

latent.�_t[7] 1.3361 0.6435 0.0213 910.5136 645.6753 1. �

latent.�_t[8] 1.0511 0.6276 0.0259 596.9875 572.8984 1. �

latent.�_t[9] 0.1353 0.5847 0.0221 703.9782 603.8956 1. �

latent.�_t[10] -1.6547 0.6322 0.0306 428.1374 765.7226 1. �

latent.�_t[11] -1.9795 0.6651 0.0393 296.3930 434.6210 1. �

latent.�_t[12] -0.2925 0.5327 0.0179 902.4608 652.9039 1. �

20



� � � � � � �

2 columns and 24 rows omitted

Figure 3 shows that the compositional model defined using our prototype system recovers the main

finding in Mishra et al; that the 𝑅𝑡 in South Korea peaked at a very high value (𝑅𝑡 ∼ 10 at peak,

Figure 3 F) before rapidly dropping below 1 in early March 2020, with the model capturing both

the epidemic trajectory and day-to-day variation in case counts (Figure 3 E).

3.2 EpiNow2: Estimate Real-Time Case Counts and Time-Varying Epidemio-

logical Parameters

In this case study, we replicate a common EpiNow2 configuration using our prototype framework.

EpiNow2 [29] is a widely-used R package for estimating the time-varying reproduction number

and making forecasts for epidemics in real-time. EpiNow2 is built around three core modeling

components that work together to reconstruct epidemic dynamics from delayed and noisy case count

observations. These are: a discrete renewal equation to model how new infections arise from previous

infections, weighted by the generation time distribution (the time between successive infections

in a transmission chain); the delay between infection and case reporting, which typically involves

multiple sequential delays including incubation periods and reporting lags; observation error to

capture overdispersion and model misspecification, with additional modifiers such as day-of-week

effects, and underascertainment to account for biases in reporting patterns. We recreate the core

EpiNow2 functionality by reusing model components from Section 2.3 and Section 3.1 and composing

them with new delay and temporal effect components.

3.2.1 Data

We use the example dataset included with the EpiNow2 R package, which contains daily confirmed

COVID-19 cases from Italy during the first wave in 2020, from 22nd February to 30th June.

using Chain, CSV, DataFramesMeta, Dates

datapath = "data/italy_data.csv"

italy_data = @chain datapath begin

CSV.read(DataFrame)

(y_t = _.confirm, dates = Date.(_."date"))

end

21



Figure 3: Model components and posterior analysis for Section 3.1. (A) Prior samples from the
AR(2) latent process for log 𝑅𝑡 over 50 days, showing potential reproductive number trajectories.
(B) Prior samples from the renewal model conditional on a fixed 𝑅𝑡 trajectory, demonstrating
infection dynamics. (C) Prior samples from the negative binomial observation model around a latent
infection curve, illustrating observation noise. (D) Comparison of the continuous serial interval
distribution (green line) with its discretised pmf (bars) used in the renewal model. (E) Posterior
predictive distribution for daily cases, with median (purple line) and 50% (dark ribbon) and 95%
(light ribbon) credible intervals compared to observed data (black points). (F) Posterior predictive
distribution for time-varying 𝑅𝑡 on a log scale, with median (green line) and 50% (dark ribbon) and
95% (light ribbon) credible intervals.

22



3.2.2 Model

Our model reuses the renewal infection model and ARIMA(2,1,1) latent process from earlier sections,

making it piecewise constant by week, whilst building an observation model that accounts for

reporting delays and day-of-week effects using discrete convolutions and a partially pooled day of

the week effect. Unlike Section 3.1 where the serial interval distribution was used (as in Mishra et

al), EpiNow2 uses the generation time distribution, which represents the time between successive

infections in a transmission chain. Mathematically, we represent the complete model as:

𝜌1, 𝜌2, 𝑍0, 𝑍−1, 𝐼0, 𝜎𝑍, 𝜎𝜔, 𝜙 ∼ 𝜋(⋅),

𝜖𝑤 ∼ Normal(0, 𝜎𝑍) i.i.d ∀𝑤,

𝑍𝑤 − 𝑍𝑤−1 = 𝜌1(𝑍𝑤−1 − 𝑍𝑤−2) + 𝜌2(𝑍𝑤−2 − 𝑍𝑤−3) + 𝜖𝑤, 𝑤 = 1, 2, 3, …

𝑅𝑡 = exp (𝑍⌊𝑡/7⌋) , Piecewise 𝑅𝑡 constant by week

𝐼𝑡 = 𝑅𝑡 ∑
𝑠≥1

𝑔𝑠𝐼𝑡−𝑠, 𝑡 = 1, 2, 3, … ,

𝑆𝑡 = ∑
𝑠≥1

𝐼𝑡−𝑠𝜂𝑠, Incubation delay: infections to symptom onset

𝐷𝑡 = ∑
𝑠≥1

𝑆𝑡−𝑠𝜉𝑠, Reporting delay: symptom onset to case reports

𝜔̃𝑘 ∼ N(0, 𝜎2
𝜔), 𝑘 = 0, … , 6, Day-of-week modifier

𝜔 = 7 × softmax(𝜔̃),

𝑦𝑡 ∼ NegBin(𝐷𝑡𝜔𝑡 mod 7, 𝜙), Link to data.

(1)

Where 𝜋 represents prior distributions for model hyperparameters. 𝑔𝑡 is the generation time

distribution pmf, 𝜂𝑡 is the incubation period distribution pmf, and 𝜉𝑡 is the reporting delay

distribution pmf (all obtained by double interval censoring continuous distributions [27]). 𝑆𝑡

represents symptom onsets (infections convolved with incubation period) and 𝐷𝑡 represents delayed

case reports (symptom onsets convolved with reporting delay). The vector 𝜔 = [𝜔0, … , 𝜔6] encodes

day-of-week effects on reporting.

3.2.2.1 Latent Model

We reuse the ARIMA(2,1,1) model arima211 defined in Section 2.3 but modify it to be piecewise

23



constant by week using the broadcast_weekly modifier.

weekly_arima211 = broadcast_weekly(arima211)

This approach models the log reproduction number as constant within each week whilst allowing

weekly changes to follow the ARIMA(2,1,1) process. In EpiNow2, although stationary process

representations of 𝑅𝑡 are available, the default latent process is a differenced stationary (Matern)

Gaussian Process; that is stationary only on its increments. Similarly, our piecewise constant weekly

model applies the ARIMA(2,1,1) model to log 𝑅𝑤 at the weekly scale, then broadcasts this to daily

values. The weekly piecewise constant formulation we use is an option in the EpiNow2 package but

not part of the default model. Prior predictive samples (Figure 4 A) show the behaviour of the

piecewise constant by week process.

3.2.2.2 Infection Generating Process

Unlike Section 3.1 where the serial interval distribution was used (as in Mishra et al), EpiNow2

uses the generation time distribution, which represents the time between successive infections in a

transmission chain. Whilst the serial interval (time between symptom onsets) is often used as a

proxy for the generation time because it is more readily observable, using the serial interval can be

problematic [30] and is primarily done in practice when generation time estimates are unavailable,

particularly early in an outbreak [31].

Here we follow the EpiNow2 getting started vignette to parameterise our model, this has a Gamma

distribution with uncertain parameters for the generation time: shape ~ Normal(1.4, 0.48) and rate

~ Normal(0.38, 0.25). Since our prototype does not yet support uncertain delay distributions, we

use the mean parameter values, giving a Gamma(1.4, 0.38) distribution with mean 3.68 days

gen_time_dist = Gamma(1.4, 1 / 0.38)

epinow2_data = EpiData(gen_distribution=gen_time_dist)

We use a similar renewal structure as we did in Section 3.1, updating it to use the generation time

distribution rather than the serial interval.

initialisation_prior = Normal(log(1.0), 2.0)

renewal_gt = Renewal(epinow2_data; initialisation_prior=initialisation_prior)

As before, to demonstrate the infection model independently, we supply a fixed 𝑅𝑡 trajectory that

24



decreases from 3 to 0.5 over 50 days. Figure 4 B shows prior samples from the renewal process

conditional on this 𝑅𝑡 trajectory.

3.2.2.3 Observation Model

We build the observation model through the composition of modular components reusing the

negative binomial link observation model (negbin) from Section 3.1, and then layer additional

modelling components on top. We start by adding a day of the week ascertainment model using the

ascertainment_dayofweek helper function.

dayofweek_negbin = ascertainment_dayofweek(negbin;

latent_model=HierarchicalNormal(std_prior=HalfNormal(1.0))

)

Unpacking this helper function reveals a nested stack of modelling constructions. First, transforma-

tion and broadcasting

function broadcast_dayofweek(model::AbstractTuringLatentModel; link = x -> 7 * softmax(x))

transformed_model = TransformLatentModel(model, link)

return BroadcastLatentModel(transformed_model, 7, RepeatEach())

end

which uses the TransformLatentModel and BroadcastLatentModel structs to dispatch the trans-

formation 𝜔 = 7 × softmax(𝜔̃) and then broadcast this along the time series.

Second is the linkage of the day of week model to the latent infections time series as a multiplicative

ascertainment process, which produces

@model function EpiAwareBase.generate_observations(obs_model::Ascertainment, y_t, Y_t)

@submodel expected_obs_mod = generate_latent(

obs_model.latent_model, length(Y_t)

)

expected_obs = obs_model.transform(Y_t, expected_obs_mod)

@submodel y_t = generate_observations(obs_model.model, y_t, expected_obs)

return y_t

25



end

In addition to ascertainment, we also need to model the incubation period (infection to symptom

onset) and a reporting delay (symptom onset to case reporting). Again following the EpiNow2 getting

started vignette, the incubation period uses a LogNormal distribution with uncertain parameters:

meanlog ~ Normal(1.6, 0.064) and sdlog ~ Normal(0.42, 0.069), giving a mean of 5.41 days at the

parameter means. The reporting delay uses a LogNormal with meanlog = 0.58 and sdlog = 0.47,

giving a mean of 1.99 days.

Since our prototype does not yet support uncertain delay distributions, we use the mean parameter

values:

incubation_distribution = LogNormal(1.6, 0.42)

reporting_distribution = LogNormal(0.58, 0.47)

The LatentDelay struct uses double interval censoring [27] to convert continuous delay models into

pmfs and stacks with the temporal modifier model. We compose two delay layers sequentially:

incubation_dayofweek_negbin = LatentDelay(dayofweek_negbin, incubation_distribution)

delay_dayofweek_negbin = LatentDelay(incubation_dayofweek_negbin, reporting_distribution)

This code demonstrates component reuse (base negbin from Section 3.1), layered composition

(adding day-of-week effects via ascertainment_dayofweek), and sequential composition (adding

two delay layers via nested LatentDelay). Note that since these are deterministic delays, we could

more efficiently compute this by first convolving the two delay distributions or by automating this

using the strata-in-strata approach with multiple dispatch. Figure 4 C demonstrates how these

delay and day-of-week effects work together to transform a latent infection signal.

3.2.3 Fitting to Data

We compose these modelling subcomponents into one EpiProblem model. The delay padding

accounts for the combined length of the incubation period and reporting delay pmfs, allowing the

model to properly account for infections that have occurred but not yet been observed by the end

of the training period.

incubation_pmf_length = length(incubation_dayofweek_negbin.rev_pmf)

reporting_pmf_length = length(delay_dayofweek_negbin.rev_pmf)

26



delay_padding = incubation_pmf_length + reporting_pmf_length

tspan = (1, 40 + delay_padding)

epinow2 = EpiProblem(epi_model=renewal_gt,

latent_model=weekly_arima211,

observation_model=delay_dayofweek_negbin,

tspan=tspan)

This EpiProblem uses the renewal model with generation time data (renewal_gt) and the piecewise

constant by week ARIMA(2,1,1) latent model (weekly_arima211). The observation model reuses

negbin from Section 3.1, layering on delays and day-of-week effects.

We filter the data as before to the timespan of interest.

italy_training_data = @chain italy_data begin

@set _.y_t = _.y_t[first(tspan):last(tspan)]

@set _.dates = _.dates[first(tspan):last(tspan)]

end

We again construct a Turing model using generate_epiaware.

epinow2_mdl = generate_epiaware(epinow2, italy_training_data)

We reuse the same inference_method defined in Section 3.1..

epinow2_results = apply_method(epinow2_mdl,

inference_method,

italy_training_data

)

Here is the summarised posterior:

summarystats(epinow2_results.samples)

Summary Statistics

parameters mean std mcse ess_bulk ess_tail �

Symbol Float64 Float64 Float64 Float64 Float64 �

27



latent.latent_init[1] 0.3094 0.1605 0.0068 556.2173 662.0437 �

latent.ar_init[1] 0.0882 0.1504 0.0057 702.2536 693.7840 �

latent.ar_init[2] 0.0235 0.1496 0.0057 693.3706 574.9652 �

latent.damp_AR[1] 0.3060 0.1662 0.0058 723.8216 376.9081 �

latent.damp_AR[2] 0.1017 0.0504 0.0018 669.8727 357.4515 �

latent.�[1] 0.0369 0.1860 0.0066 795.1720 711.4211 �

latent.std 0.1926 0.0550 0.0022 572.2796 550.1314 �

latent.�_t[1] -1.5427 0.5405 0.0254 463.7243 652.2106 �

latent.�_t[2] -1.3429 0.5853 0.0220 732.8516 639.1567 �

latent.�_t[3] 0.5980 0.5590 0.0208 726.2907 717.0990 �

latent.�_t[4] 0.5498 0.5383 0.0187 852.8721 671.5520 �

latent.�_t[5] -0.2135 0.7120 0.0223 1029.9857 760.0157 �

latent.�_t[6] -0.0362 1.0194 0.0329 961.9357 688.8595 �

init_incidence 6.2263 0.4632 0.0186 640.2673 639.1262 �

obs.DayofWeek.std 0.1528 0.0635 0.0031 383.5912 604.3721 �

obs.DayofWeek.�_t[1] 0.0557 0.5364 0.0241 498.0382 670.2969 �

obs.DayofWeek.�_t[2] -0.4793 0.5410 0.0255 467.0653 439.5359 �

� � � � � � �

2 columns and 6 rows omitted

We see the model has converged and the summary statistics are similar to Section 3.1. Figure 4

shows that the compositional model recovers similar 𝑅𝑡 dynamics to Section 3.1 (Figure 4 F), whilst

explicitly accounting for reporting delays (Figure 4 D) and day-of-week effects that help disentangle

true transmission changes from reporting artifacts (Figure 4 E).

3.3 Contemporary statistical inference for infectious disease models using Stan

In this vignette, we’ll demonstrate how to use EpiAware in conjunction with the SciML ecosystem [10]

to replicate Contemporary statistical inference for infectious disease models using Stan Chatzilena

et al. 2019.

This case study is currently being developed separately in case-study-3.qmd and will be integrated

once it follows the standard case study format.

28

https://www.sciencedirect.com/science/article/pii/S1755436519300325
https://www.sciencedirect.com/science/article/pii/S1755436519300325


Figure 4: Model components and posterior analysis for Section 3.2. (A) Prior samples from
the piecewise constant by week ARIMA(2,1,1) latent process for log 𝑅𝑡 over 50 days, showing
non-stationary reproductive number trajectories that are constant within each week. (B) Prior
samples from the renewal model conditional on a fixed 𝑅𝑡 trajectory. (C) Prior samples from the
composite observation model including incubation period, reporting delays and day-of-week effects
around a latent infection curve. (D) Comparison of the continuous incubation period (green line)
and reporting delay (blue line) distributions with the combined discretised delay pmf (bars). (E)
Posterior predictive distribution for daily cases, with median (purple line) and 50% (dark ribbon)
and 95% (light ribbon) credible intervals compared to observed data (black points). (F) Posterior
predictive distribution for time-varying 𝑅𝑡 on a log scale, with median (green line) and 50% (dark
ribbon) and 95% (light ribbon) credible intervals.

29



4 Discussion

This paper has demonstrated that compositional approaches can address barriers in epidemiological

modelling. We presented a prototype that enables “LEGO-like” model construction, maintaining

the statistical rigour of joint models whilst providing the flexibility of pipeline approaches. The

autoregressive model example illustrated how complex models emerge from simple component

combinations using the struct-in-struct pattern. Our three case studies, which were based on

previous studies [15–17], demonstrate model composability for a range of problems and using

different underlying methods.

A strength of our prototype approach is its modular design, which enables faster model development

and component reuse, whilst also facilitating comparison of modelling assumptions without large

reimplementation efforts. The approach reduces implementation barriers for methodological advances

and enables researchers to embed new components within existing models more easily. Standardised

interfaces should also allow large language models to compose models programmatically with

validation methods ensuring correctness. However, a clear limitation is that this is just a prototype

and not designed for ongoing use or adoption. For example, we only partially implemented support

for automated mappings between latent and observed states, which remains challenging to do well.

Similarly we only added partial support for partial pooling approaches with no infrastructure in

place to support users in using this functionality in our DSL layer. The current component library

also remains limited to basic epidemiological patterns. Finally, the current struct manipulation

tooling cannot coordinate updates of related parameters such as model order and corresponding

priors without manual intervention, requiring either avoiding this pattern or developing additional

solutions. Whilst the prototype implementation has limitations, the three real-world case studies

presented here establish the viability of compositional approaches for practical epidemiological

problems. On top of this, we have layed the ground work for future work and given clear requirements

that future composable frameworks should seek to meet to address the needs of applied infectious

disease modelling. Another limitation is the learning curve required for researchers familiar with

monolithic approaches to adopt this compositional paradigm. However, as they can embed elements

of our system within their existing models and as they can implement their own compositional

elements with minimal understanding of the overall architecture these barriers to use should be

mitigated. Computational overhead from abstraction layers is also a concern, the impact of this

overhead and potential optimisations remain unclear. However, Turing.jl [8] and Julia [19] are well

30



positioned for optimisation with new auto differentiation backends like Enzyme [32] and Mooncake

[33], which could reduce computational costs in future implementations. Similarly, ongoing work in

the Turing.jl ecosystem should be able to identify and resolve any bottlenecks in performance that

do emerge. A strength of the Julia [19] ecosystem for compositional work is that domain experts

develop specialised tools that interoperate through shared interfaces, enabling innovation across

projects. However, this distributed development also creates challenges as it can be difficult to

locate appropriate tools and unclear where responsibility lies when issues emerge. Users may not

know whether problems originate in Turing.jl, our prototype DSL, or elsewhere in the ecosystem

and even once located it can be difficult to determine who is responsible for resolving them. There

are also additional technical barriers within the Turing.jl ecosystem. The Turing PPL DSL is

not fully stable and since developing this prototype the @submodel macro has changed syntax and

become a function with breaking changes in how it handles prefixes and in how it manages variables

within a submodel, meaning our current prototype implementation is not compatible with the latest

Turing.jl release. However, some of these changes do allow for potentially more flexible models as

they reduce the difference between specifying something as a distribution and as a submodel. Other

recent changes in Turing.jl such as the primary workflow for observed data being to condition and

fix with no argument for observations impact how data is conditioned on the model, which would

mean not having to pass observations through layers of the model and so would make building

composable models much easier. Turing.jl also has limited handling of numerical instability and

so things like large counts being simulated can cause errors, which makes evaluating and developing

models frustrating. An advantage of the Julia [19] ecosystem for a composable modelling tool built

on top of a PPL is the access to the full features of a programming language. However, in practice

some of these utilities, such as profiling tools can be frustrating and difficult to use with Turing.jl

when compared to similar tools offered in other ecosystem because the probabilistic programming

language abstractions and macro expansions obscure the relationship between source code and

runtime behaviour, making it challenging to identify performance bottlenecks in model components.

The ecosystem needs further development in areas such as debugging tools that can trace through

model execution whilst preserving the semantic structure of probabilistic models, better error

messages that relate numerical issues to model specification rather than low-level implementation

details, and standardised approaches for model validation and testing. The EpiMethod approach for

chaining inference (combining pre-sampling like Pathfinder [28] with sampling like the No U-Turn

Sampler (NUTS) [22]) shows promise but should be a Turing.jl general solution rather than

31



epi-specific because many domains face similar challenges of difficult posterior geometries where

adaptive warmup strategies could improve both efficiency and reliability of inference across the

broader probabilistic programming ecosystem.

Our prototype could draw more heavily on category theory [fong2018seven?], which provides

formal mathematical foundations for composability through operadic structures that guarantee valid

model composition whilst maintaining modularity. The AlgebraicJulia ecosystem demonstrates how

these theoretical foundations can be operationalised into software, with AlgebraicPetri.jl [9]

and AlgebraicDynamics.jl [34] implementing operadic composition through structured cospans

and wiring diagrams. These provide explicit graphical syntax where boxes represent model compo-

nents and wires represent connections between them, with the categorical structure ensuring that

composed models remain mathematically valid. AlgebraicJulia approaches offer stronger formal

guarantees about compositional correctness than our type-based interfaces, with explicit separation

of structural syntax from computational semantics enabling multiple interpretations of the same com-

positional structure. The SciML ecosystem [10] takes a different symbolic-numeric approach, where

ModelingToolkit.jl [11] and Catalyst.jl [12] use acausal equation-based modelling with auto-

mated symbolic transformations to support mixed equation types, achieving substantial performance

improvements through automated parallelisation, sparsity detection, and equation simplification.

However, both category theory and symbolic-numeric frameworks focus primarily on dynamical

systems with no native support for probability distributions as first-class objects, requiring external

tools like Turing.jl for Bayesian inference and additional layers to connect symbolic specifications

to observational data with measurement error. Our probabilistic programming foundation offers

more direct support for statistical inference and uncertainty quantification, supports a broader

range of modelling approaches, but lacks the formal compositional guarantees of category theory

approaches and automated optimisations of symbolic-numeric frameworks.

Alternative probabilistic programming languages could support similar compositional approaches.

Gen.jl [35] focuses on programmable inference with explicit control over inference strategies,

supporting composition through its combinator-based approach to building generative models.

However, Gen operates more independently from the broader Julia ecosystem, maintaining its

own distribution types rather than using Distributions.jl [21], which negates a key strength

of Julia approaches where packages interoperate through shared interfaces. Despite this, Gen-

based tools demonstrate useful functionality for epidemiological modelling, such as AutoGP.jl

32



[36], which implements real-time inference and automated composition of Gaussian process kernels

that could be useful for modelling time-varying epidemiological parameters. Genify [37] provides

an approach that translates Julia code into Gen models, potentially easing adoption by allowing

modellers to write in familiar Julia syntax whilst accessing Gen’s programmable inference capabilities.

Python-based probabilistic programming languages such as NumPyro [38] built on JAX [39]

could enable similar composability [40], with potential advantages from JAX’s focus on efficiency

and GPU scaling. However, the smaller JAX-specific ecosystem compared to general Python

packages, JAX’s optimisation for neural network tasks, and Python PPLs’ more programmer-

oriented syntax that diverges from mathematical notation may create barriers for epidemiological

modellers. Julia [19] supports GPU computing with ongoing work to expand integration into

Turing.jl [8]. JuliaBUGS.jl [41] offers an alternative Julia-based PPL with BUGS syntax that

also builds off of Distributions.jl. Unlike imperative probabilistic programming languages such

as Turing.jl, JuliaBUGS.jl uses a declarative graph-based approach where users specify directed

graphical models by explicitly stating conditional dependencies between variables. This graph-

based representation offers several advantages including clearer understanding of dependencies,

more transparent model structure and assumptions, and efficient inference through algorithms

that leverage the model’s graphical structure to identify conditional independence relationships.

However, the declarative approach trades off the flexibility of Turing.jl’s imperative style, which

allows procedural code with loops and conditionals that can be more expressive for certain complex

modelling patterns. Building our domain-specific language on Distributions.jl rather than

Turing.jl could enable compatibility with multiple PPLs including JuliaBUGS.jl whilst trading

off Turing.jl’s expressive submodel interface.

Areas for future work include expanding the component library to address epidemiological applica-

tions across multiple scales and data types. More work is also needed to allow for modifying deeply

nested model specifications without the user needing to be aware of the structure of the nested

model. Methodological advances are also needed including for the joint estimation of interdependent

epidemiological parameters, and then integration of individual and population-level observations.

Alternative approaches also need to investigated, particularly more formal category theory based

methods that use operadic composition for mathematically rigorous hierarchical model construc-

tion, as demonstrated in AlgebraicPetri.jl and AlgebraicDynamics.jl [9]. Symbolic-numeric

frameworks like ModelingToolkit.jl [11] and Catalyst.jl [12] offer potential performance im-

provements through automatic optimisation and code generation. However, these approaches require

33



generalisation to explicitly model probabilities and support a range of different modelling approaches

which are both needed for infectious disease modelling applications. An alternative potential

abstraction approach would be to build the domain-specific language on Distributions.jl rather

than Turing.jl, which would enable compatibility with multiple probabilistic programming lan-

guages like JuliaBUGS whilst trading off the expressiveness of Turing’s submodel interface. Further

investigation of Gen.jl [35], Genify [37], and JuliaBUGS.jl [41] is needed, as Gen’s programmable

inference capabilities and tools like AutoGP.jl [36] may overcome some limitations of Turing.jl,

Genify’s metaprogramming bridge could ease adoption by allowing modellers to write familiar Julia

code, and JuliaBUGS’s graph-based approach could enable more efficient inference through explicit

model structure. Performance optimisation through parallelisation and approximate inference

methods, along with integration bridges to existing epidemiological software ecosystems, will be

needed for practical adoption. The compositional framework creates opportunities for large language

model integration. Language models could serve as model construction agents, using a composable

framework to construct epidemiological models from component libraries [18]. The explicit structure

and validation tools of a composable framework should enable language models to reason about

model design and propose structural adaptations more easily and with less room for error. Another

advantage of our approach for large language model assisted model construction is that the high-level

component interface reduces context and reasoning requirements, enabling deployment of smaller

models on local compute in resource-constrained settings.

A complete implementation of the prototype we present here could improve real-time analysis of

infectious disease dynamics by enabling “LEGO-like” assembly of epidemiological components. This

prototype establishes the feasibility of integrating diverse expertise whilst maintaining statistical

rigour, addressing limitations of current modelling approaches. Such frameworks are also likely key

for enabling, and increasing the robustness of, large language model assisted model construction,

especially in resource-constrained settings where such capabilities could prove most valuable. Given

the unpredictable nature of future infectious disease threats such adaptable modelling capabilities

that can incorporate diverse data sources and domain expertise are needed for future public health

decision making.

4.1 Acknowledgements

Poppy the dog for growling at the right times.

34



References

1. Whitty CJM. What makes an academic paper useful for health policy? BMC Medicine.

2015;13. doi:10.1186/s12916-015-0544-8

2. Tsui JK-C, Baker RE, Janies DA, Krystosik AR, Leon JS, Pascual M. Global climate

change, disaster risk, and emerging infectious disease. Ann N Y Acad Sci. 2024;1534: 5–18.

doi:10.1111/nyas.15134

3. Huisman JS, Scire J, Angst DC, Li J, Neher RA, Maathuis MH, et al. Estimation and

worldwide monitoring of the effective reproductive number of SARS-CoV-2. eLife. 2022;11.

doi:10.7554/elife.71345

4. Birrell PJ, Blake J, Kandiah J, Alexopoulos A, Leeuwen E van, Pouwels K, et al. Real-time

modelling of the SARS-CoV-2 pandemic in england 2020-2023: A challenging data integration.

arXiv; 2024. doi:10.48550/arXiv.2408.04178

5. Watson OJ, Funk S, Abbott S. Bayesian estimation of case counts and reproduction numbers

from line list and wastewater data. medRxiv. 2024. doi:10.1101/2024.07.05.24310014

6. Lison A, Abbott S, Huisman J, Stadler T. Generative bayesian modeling to nowcast the

effective reproduction number from line list data with missing symptom onset dates. Britton T,

editor. PLOS Computational Biology. 2024;20: e1012021. doi:10.1371/journal.pcbi.1012021

7. Nicholson G, Blangiardo M, Briers M, Diggle PJ, Fjelde TE, Ge H, et al. Interoperability

of statistical models in pandemic preparedness: Principles and reality. Stat Sci. 2022;37.

doi:10.1214/22-sts854

8. Fjelde TE, Xu K, Widmann D, Tarek M, Pfiffer C, Trapp M, et al. Turing.jl: A general-

purpose probabilistic programming language. ACM Transactions on Probabilistic Machine

Learning. 2025. doi:10.1145/3711897

35

https://doi.org/10.1186/s12916-015-0544-8
https://doi.org/10.1111/nyas.15134
https://doi.org/10.7554/elife.71345
https://doi.org/10.48550/arXiv.2408.04178
https://doi.org/10.1101/2024.07.05.24310014
https://doi.org/10.1371/journal.pcbi.1012021
https://doi.org/10.1214/22-sts854
https://doi.org/10.1145/3711897


9. Libkind S, Baas A, Halter M, Patterson E, Fairbanks JP. An algebraic framework for

structured epidemic modelling. Philosophical Transactions of the Royal Society A. 2022;380:

20210309. doi:10.1098/rsta.2021.0309

10. SciML: Open source software for scientific machine learning. https://sciml.ai/; 2024. Avail-

able: https://sciml.ai/

11. Ma Y, Gowda S, Anantharaman R, Laughman C, Shah V, Rackauckas C. ModelingToolkit:

A composable graph transformation system for equation-based modeling. 2021. Available:

https://arxiv.org/abs/2103.05244

12. Loman YAI Torkel E. AND Ma. Catalyst: Fast and flexible modeling of reaction networks.

PLOS Computational Biology. 2023;19: e1011530. doi:10.1371/journal.pcbi.1011530

13. Jing X, Yang X, Luo J, Zuo G. Code examples for the paper ”a flexible, differentiable frame-

work for neural-enhanced hydrological modeling: Design, implementation, and applications

with HydroModels.jl”. Zenodo; 2025. doi:10.5281/zenodo.15549719

14. Klöwer M, Gelbrecht M, Hotta D, Willmert J, Silvestri S, Wagner GL, et al. SpeedyWeather.jl:

Reinventing atmospheric general circulation models towards interactivity and extensibility.

Journal of Open Source Software. 2024;9: 6323. doi:10.21105/joss.06323

15. Mishra S, Scott JA, Harrison E, Zhu H, Ferguson NM, Bhatt S. A COVID-19 transmis-

sion model with time-varying transmission rate. arXiv preprint arXiv:200616487. 2020.

doi:10.48550/arXiv.2006.16487

16. Abbott S, Hellewell J, Sherratt K, Gostic K, Hickson J, Badr HS, et al. EpiNow2: Estimate

real-time case counts and time-varying epidemiological parameters. https://epiforecasts.io/

EpiNow2/; 2020.

36

https://doi.org/10.1098/rsta.2021.0309
https://sciml.ai/
https://sciml.ai/
https://arxiv.org/abs/2103.05244
https://doi.org/10.1371/journal.pcbi.1011530
https://doi.org/10.5281/zenodo.15549719
https://doi.org/10.21105/joss.06323
https://doi.org/10.48550/arXiv.2006.16487
https://epiforecasts.io/EpiNow2/
https://epiforecasts.io/EpiNow2/


17. Chatzilena A, Zyl G van, Manson AL, Earl AM, Jamieson FB, Joloba ML, et al. Contemporary

tuberculosis transmission in Lagos, Nigeria: Spatial patterns and model calibration using

genomic epidemiology. Epidemics. 2019;29: 100363. doi:10.1016/j.epidem.2019.100363

18. Aygün E, Belyaeva A, Comanici G, Coram M, Cui H, Garrison J, et al. An AI system to

help scientists write expert-level empirical software. arXiv preprint arXiv:250906503. 2025.

doi:10.48550/arXiv.2509.06503

19. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to numerical

computing. SIAM Review. 2017;59: 65–98. doi:10.1137/141000671

20. Mishra S, Berah T, Mellan TA, Unwin HJT, Vollmer MA, Parag KV, et al. On the derivation

of the renewal equation from an age-dependent branching process: an epidemic modelling

perspective.

21. Besançon M, Papamarkou T, Anthoff D, Arslan A, Byrne S, Lin D, et al. Distributions.jl:

Definition and modeling of probability distributions in the JuliaStats ecosystem. Journal of

Statistical Software. 2021;98: 1–30. doi:10.18637/jss.v098.i16

22. Hoffman MD, Gelman A. The no-u-turn sampler: Adaptively setting path lengths in hamil-

tonian monte carlo. Journal of Machine Learning Research. 2014;15: 1593–1623. Available:

https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf

23. Thompson W. PairPlots.jl: Beautiful and flexible visualizations of high dimensional data.

2023. Available: https://github.com/sefffal/PairPlots.jl

24. Danisch S, Krumbiegel J. Makie.jl: Flexible high-performance data visualization for Julia.

Journal of Open Source Software. 2021;6: 3349. doi:10.21105/joss.03349

37

https://doi.org/10.1016/j.epidem.2019.100363
https://doi.org/10.48550/arXiv.2509.06503
https://doi.org/10.1137/141000671
https://doi.org/10.18637/jss.v098.i16
https://www.jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf
https://github.com/sefffal/PairPlots.jl
https://doi.org/10.21105/joss.03349


25. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate

time-varying reproduction numbers during epidemics. American journal of epidemiology.

2013;178: 1505–1512.

26. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth

rates and reproductive numbers. Proceedings of the Royal Society B: Biological Sciences.

2007;274: 599–604.

27. Charniga K, Park SW, Akhmetzhanov AR, Cori A, Dushoff J, Funk S, et al. Best practices

for estimating and reporting epidemiological delay distributions of infectious diseases. PLoS

computational biology. 2024;20: e1012520.

28. Zhang L, Carpenter B, Gelman A, Vehtari A. Pathfinder: Parallel quasi-newton variational

inference. Journal of Machine Learning Research. 2022;23: 1–49.

29. Abbott S, Hellewell J, Thompson R, Sherratt K, Gibbs H, Bosse N, et al. Estimating the

time-varying reproduction number of SARS-CoV-2 using national and subnational case

counts [version 2; peer review: 1 approved, 1 approved with reservations]. Wellcome Open

Research. 2020;5. doi:10.12688/wellcomeopenres.16006.2

30. Park SW, Sun K, Abbott S, Sender R, Bar-On YM, Weitz JS, et al. Inferring the differences

in incubation-period and generation-interval distributions of the delta and omicron variants

of SARS-CoV-2. Proceedings of the National Academy of Sciences. 2023;120: e2221887120.

31. Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the

basic reproduction number of novel coronavirus (2019-nCoV) in china, from 2019 to 2020: A

data-driven analysis in the early phase of the outbreak. International journal of infectious

diseases. 2020;92: 214–217.

38

https://doi.org/10.12688/wellcomeopenres.16006.2


32. Moses WS, Churavy V. Instead of rewriting foreign code for machine learning, automatically

synthesize fast gradients. Advances in neural information processing systems. 2020. pp.

12472–12485. Available: https://arxiv.org/abs/2010.01709

33. Dalle G, Hill A. A common interface for automatic differentiation. 2025. Available: https:

//arxiv.org/abs/2505.05542

34. Libkind S, Baas A, Patterson E, Fairbanks J. Operadic modeling of dynamical systems:

Mathematics and computation. Proceedings of the fourth international conference on applied

category theory (ACT 2021). 2021. pp. 192–206. doi:10.4204/EPTCS.372.14

35. Cusumano-Towner MF, Saad FA, Lew AK, Mansinghka VK. Gen: A general-purpose

probabilistic programming system with programmable inference. Proceedings of the 40th

ACM SIGPLAN conference on programming language design and implementation. ACM;

2019. pp. 221–236. doi:10.1145/3314221.3314642

36. Saad FA, Patton BJ, Hoffmann MD, Saurous RA, Mansinghka VK. Sequential monte carlo

learning for time series structure discovery. Proceedings of the 40th international conference

on machine learning. PMLR; 2023. pp. 29473–29489. doi:10.48550/arXiv.2307.09607

37. Tan Z-X, Becker MR, Mansinghka VK. Genify.jl: Transforming Julia into Gen to enable

programmable inference. Workshop on languages for inference (LAFI, co-located with POPL

2021). 2021. Available: https://popl21.sigplan.org/details/lafi-2021-papers/5/Genify-jl-

Transforming-Julia-into-Gen-to-enable-programmable-inference

38. Phan D, Pradhan N, Jankowiak M. Composable effects for flexible and accelerated

probabilistic programming in NumPyro. arXiv preprint arXiv:191211554. 2019.

doi:10.48550/arXiv.1912.11554

39

https://arxiv.org/abs/2010.01709
https://arxiv.org/abs/2505.05542
https://arxiv.org/abs/2505.05542
https://doi.org/10.4204/EPTCS.372.14
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.48550/arXiv.2307.09607
https://popl21.sigplan.org/details/lafi-2021-papers/5/Genify-jl-Transforming-Julia-into-Gen-to-enable-programmable-inference
https://popl21.sigplan.org/details/lafi-2021-papers/5/Genify-jl-Transforming-Julia-into-Gen-to-enable-programmable-inference
https://doi.org/10.48550/arXiv.1912.11554


39. Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, et al. JAX:

Composable transformations of Python+NumPy programs. 2018. Available: http://github.

com/jax-ml/jax

40. Center for Forecasting and Outbreak Analytics, US Centers for Disease Control and Pre-

vention. PyRenew: A package for Bayesian renewal modeling with JAX and NumPyro.

https://github.com/CDCgov/PyRenew; 2024.

41. Sun X, Gabler P, Thomas A, Ge H. JuliaBUGS.jl: A graph-based probabilistic programming

language using BUGS syntax. Presented at Workshop on Languages for Inference (LAFI,

co-located with POPL 2024); 2024. Available: https://github.com/TuringLang/JuliaBUGS.jl

40

http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://github.com/CDCgov/PyRenew
https://github.com/TuringLang/JuliaBUGS.jl

	Introduction
	Prototype Implementation
	Requirements for Composable Infectious Disease Modelling
	Our approach
	Domain-Specific Language Structure
	Backend Implementation: Turing Interface

	Case Studies
	On the derivation of the renewal equation from an age-dependent branching process: an epidemic modelling perspective
	Data
	Model
	Fitting to Data

	EpiNow2: Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters
	Data
	Model
	Fitting to Data

	Contemporary statistical inference for infectious disease models using Stan

	Discussion
	Acknowledgements

	References

