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Abstract

Infectious disease modelling plays a critical role in public health decision-making, from
outbreak response to long-term planning. The field faces mounting challenges as models grow
increasingly complex, incorporate greater ranges of real-time data streams, and explore more
intervention scenarios. Current approaches require either sacrificing performance for ease of use
in high-level languages like R and Python, or accessibility for speed in low-level implementations.
Domain-specific tools provide targeted solutions but lack integration with broader scientific
computing advances, whilst general-purpose frameworks have steep learning curves, and often
don’t have all the features needed for applied infectious disease modelling. Julia addresses
these challenges through its combination of multiple dispatch, native performance, and coherent
scientific ecosystem. We examine Julia’s key features and summarise its ecosystem for infectious
disease modelling, spanning the SciML ecosystem, JuMP, AlgebraicJulia, Turing.jl, Gen.jl
and RxInfer.jl, other model fitting options, neural networks, agent-based modeling, automatic
differentiation, and data science tools. Through three case studies, we show how these components
integrate to support complex epidemiological models. Julia offers a unique combination of
performance, expressiveness, and composability that addresses limitations of both pipeline and
monolithic modelling approaches.
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1 Introduction

Infectious disease modelling (IDM) plays a critical role in public health decision-making, from

outbreak response to long-term planning. The field faces mounting challenges as models grow

increasingly complex, incorporate a greater range of real-time data streams, and explore more

intervention scenarios. This complexity manifests in both computational demands and code

maintenance challenges, making it difficult to produce impactful work within the timescales that

matter when responding rapidly to emerging threats.

Modern outbreak response often requires rapid development and deployment of novel methods,
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frequently combining multiple modelling approaches to address emerging threats. This challenge

is highlighted by tools like EpiNow2 [1,2] and EpiNowcast [3], which despite their success, have

struggled to integrate novel features and methodological advances from the broader modelling

community. The difficulty in incorporating external contributions and specialised backend tools,

even for established projects, highlights a challenge in the field. While approaches like epidist [4],

which builds on top of brms, demonstrate one path toward integration, such solutions are often

limited in scope and only available for certain model types.

There are all so challenges in wider epidemiological research practice. The implementation of

Bayesian workflows remains particularly challenging for many practitioners, requiring expertise in

both statistical methodology and computational techniques. Furthermore, the current paradigm

of research study development often requires teams to rebuild complex model frameworks from

scratch, leading to duplicated effort, potential inconsistencies, and slower scientific progress. Even

with advances in computing power, the persistent tension between computational performance and

accessibility continues to impede both rapid outbreak response and longer-term research projects,

where sophisticated models must be balanced against practical constraints of time and expertise.

Several solutions have been proposed to address these challenges, including domain-specific tools

like odin and pomp, as well as general-purpose probabilistic programming languages like Stan [5]

and JAX [6]. While these tools have made important contributions, they often face significant

limitations. Domain-specific solutions, while powerful for their intended use cases, typically lack

integration with broader scientific computing ecosystems, making it difficult to leverage advances

in fields like differential equations or optimization. Meanwhile, general-purpose tools like Stan

[5] and JAX [6], despite their mathematical sophistication, can be challenging to use effectively

without substantial programming expertise. Furthermore, the development of efficient algorithms

and implementation patterns often falls to domain experts rather than being handled by dedicated

numerical computing specialists, leading to potential inefficiencies and missed opportunities for

optimization.

This paper explores how Julia [7] addresses these challenges through its design philosophy and

scientific ecosystem. We examine Julia’s key features, including multiple dispatch, native perfor-

mance, and metaprogramming, that enable efficient implementation of epidemiological models whilst

maintaining code accessibility. We summarise Julia’s ecosystem for infectious disease modelling,

spanning the SciML ecosystem, JuMP, AlgebraicJulia, Turing.jl, Gen.jl and RxInfer.jl, other model
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fitting options, neural networks, agent-based modeling, automatic differentiation, and data science

tools. Through three case studies, we show how these components integrate to support complex

epidemiological models. Finally, we discussion of Julia’s potential to address current challenges in

infectious disease modelling and directions for future work.

2 Key features of the Julia language

• Multiple Dispatch and Type System

• Native Performance

• Metaprogramming

• Package Interoperability

• Interactive

• Auto-differentation

3 The Ecosystem

3.1 The Scientific Machine Learning Ecosystem (SciML)

3.2 Julia for Mathematical Programming (JuMP)

3.3 Applied Category Theory in Julia (AlgebraicJulia)

• EpiCats.jl

Applied epidemiological models can become complex, incorporating heterogeneities such as age, risk

factors, and spatial location, which can make these models difficult to understand, and difficult

to debug if the model does not behave as expected. One solution to this problem is to build

complex models from simpler ones, with the idea that small, simple models can be understood.

Applied category theory (ACT) has been proposed as one mechanism that can ‘add’ models together,

e.g. adding a transition from susceptibles to immune to model vaccination, as well as ‘multiply’

models, for example combining an SIR model with a model of age classes to generate an age-

structured model. The mathematics underlying ACT provide guarantees that the resulting models

are correct by construction, while the ability to build up a model incrementally provides a clearer

understanding of the model assumptions. ACT was originally applied to composing ordinary and

delay differential equation models, as well as difference equation models.
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A central data structure in AlgebraicJulia is the attributed C-set (ACSet, pronounced ‘ah-chet’),

a joint generalization of a graph and a dataframe. ACSets have been used to represent Petri

net models as well as stock-and-flow models, in addition to other areas where problems can be

represented as wiring diagrams, including optimization, optimal control, databases, and planning.

3.4 Turing.jl

• Turing.jl [8]

• ecosystem

• PPL

• DynamicPPL

• JuliaBugs

• Inference

• Other cool stuff?

3.5 Gen.jl and RxInfer.jl

In addition to Turing.jl, there are other probabilistic programming languages in Julia that take a

different approach to Turing.jl.

• Gen.jl [9]

3.6 Other Model Fitting Options

• Pigeons.jl parallel tempering - PPL agnostic

• Others?

3.7 Neural networks

• Lux.jl https://lux.csail.mit.edu/stable/introduction/overview

3.8 Agent-Based Modeling

Agents.jl [10] provides a comprehensive framework for agent-based modeling in Julia. The package

offers high-performance simulations with minimal code complexity, supporting both continuous

and discrete agent-based models. Its integration with the broader Julia ecosystem enables seamless

incorporation of differential equations, optimisation, and statistical analysis within agent-based
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simulations, making it particularly valuable for epidemiological modeling where individual-level

interactions drive population-level dynamics.

3.9 Automatic Differentiation

• Able to switch to different auto differentiation approaches

• Enables picking the one that works best for your problem

• Also allows for benefiting from ongoing research as can swap in new options as they become

available.

• Forward differentiation and reverse differentiation

• Enzyme, Mooncake

3.10 Data Science Tools

Julia provides a comprehensive data science ecosystem that complements its scientific computing

capabilities. DataFrames.jl and DataFramesMeta.jl offers powerful tabular data manipulation, while

visualization libraries like Makie.jl. The AlgebraOfGraphics.jl (AoG) package provides a grammar

of graphics system, and the Tidier.jl ecosystem brings familiar data wrangling patterns to Julia

users. These tools integrate seamlessly with the modeling and inference capabilities discussed above,

enabling end-to-end workflows from data preparation through analysis and visualization.

4 Case Studies

Julia has already been used successfully in several epidemiological modelling studies, demonstrating

its growing adoption within the infectious disease modelling community. A notable example

is the Epirecipes project [11], originally a multi-language collection of epidemiological models,

which has increasingly focused on Julia implementations. The project serves as a “cookbook” of

epidemiological models, showcasing Julia’s versatility through diverse approaches to classical models

like SIR: from compositional modelling using AlgebraicJulia’s category theory framework (EpiCats),

to Bayesian parameter estimation with Gen.jl and Turing.jl, to advanced stochastic processes and

bifurcation analysis. This demonstrates how Julia’s ecosystem enables researchers to explore the

same epidemiological concepts through multiple complementary computational paradigms whilst

maintaining code reusability and mathematical rigour. The following case studies build upon this

foundation to illustrate specific aspects of Julia’s capabilities for infectious disease modelling.
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4.1 Case Study 1: Compartmental Susceptible-Exposed-Infectious-Recovered

(SEIR) Model with time-varying transmission rate

1. ODE Model Specification

• Define SEIR differential equations using SciML ecosystem

• Implement core compartmental structure

• Validate numerical stability and solver choice

2. Time-varying Transmission Rate

• AR(1) process model for transmission rate �(t)

• Connect latent AR process to ODE system dynamics

• Leverage existing parameter validation from previous case

3. Observation Process

• Apply negative binomial observation model

• Extend observation layer to capture:

– Incidence data from E→I transitions

– Prevalence data from I compartment

4. Complete Model Integration

• Combine deterministic ODE backbone with stochastic components

• Link transmission process to compartmental dynamics

• Connect compartmental states to observation layer

• Implement efficient Bayesian inference pipeline

5. Model Validation

• Simulate data from the model

• Fit to the simulated data i.e. SBC

• Simulate a known beta scenario

• Fit and recover from it.

4.2 Case study 2: TBD

Potential options:

• Petri net composition of a SEIR model with age structure and variant dynamics. Simulate

from and integrate into Turing for fitting. Something like: https://github.com/epirecipes/Epi-

Cats/blob/main/pn_stratify_ageclasses/pn_stratify_ageclasses.md but extended.
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• Agent.jl model to Gen.jl via Genify.jl (https://github.com/probcomp/Genify.jl)

• Neural ODEs: SEIR w/ AR + NN interaction terms: https://github.com/vboussange/Hy-

bridDynamicModels.jl

• UDEs SEIR with NN on multiple datasets: https://www.sciencedirect.com/science/arti-

cle/pii/S240584402401394X

Some or all of the case studies likely need to include real data to convince applied modellers at the

same time we want to keep the high level and schematic to make this achievable and to make sure

we can communicate the key points.

4.3 Case study 3 : TBD

5 Discussion

This paper has examined Julia’s capacity to address barriers in infectious disease modelling through

its combination of performance, composability, and scientific ecosystem integration. We have outlined

Julia’s key features including multiple dispatch, native performance, and metaprogramming that

enable efficient implementation of epidemiological models. We have summarised Julia’s ecosystem

spanning the SciML ecosystem, JuMP, AlgebraicJulia, Turing.jl, Gen.jl and RxInfer.jl, other model

fitting options, neural networks, agent-based modeling, automatic differentiation, and data science

tools that integrate to create a coherent environment for model development. Through our case

studies, we have shown how these components support compartmental models with time-varying

transmission, combining deterministic dynamics with stochastic processes and Bayesian inference.

While challenges remain in compilation times and community size, Julia provides a coherent approach

to infectious disease modelling that eliminates the traditional trade-off between accessibility and

performance.

• Demonstrated Julia’s unique position in scientific computing for IDM through multiple dispatch,

native performance, and seamless package interoperability

• Showed how ecosystem components work together cohesively, enabling “two-language problem”

elimination from prototyping to production

• Illustrated practical benefits through case studies spanning differential equations, Bayesian

inference, and automatic differentiation

• True language-level composability between packages enables rapid model development and
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component reuse, though requires learning curve for researchers familiar with monolithic

approaches in R/Python

• Rich type system enabling both safety and performance facilitates systematic model validation,

yet compilation times can impact interactive development workflow

• Growing, academically-focused ecosystem provides cutting-edge scientific computing tools,

however IDM-specific tooling remains limited compared to established R/Python packages

• Native performance eliminates computational bottlenecks common in other high-level languages,

but smaller community means fewer domain-specific examples and tutorials

While JAX [6] offers automatic differentiation and acceleration, it remains a framework rather than

a language solution, leading to limited expressiveness due to Python’s underlying type system,

restricted functional programming patterns, and complex deployment challenges. Julia’s multiple

dispatch provides more natural problem expression for epidemiological models, particularly when

implementing complex infectious disease models with feedback loops, integrating real-time data

streams for forecasting, or mixing deterministic and stochastic model components.

Traditional probabilistic programming languages like Stan [5] suffer from limited flexibility in model

specification, separation between modelling and analysis environments, and performance overhead

from interface translations. Julia’s native probabilistic programming through Turing.jl addresses

these limitations whilst supporting stochastic differential equations, discrete event simulation, and

agent-based modelling approaches that are essential for comprehensive infectious disease analysis.

Double censored delays are common in infectious disease modelling as most epidemiological delays

have censored primary and secondary event [12,13]. Tools to model these delays are a good example

of the potential benefits to the IDM ecosystem of adopting Julia. The R package primarycensored

[14] addresses this by providing both R functions and separate Stan implementations, as well as tools

for injecting the Stan code into custom models. CensoredDistributions.jl is a pure Julia version of

the same solution [15] and uses multiple dispatch to automatically select between analytical solutions

and numerical methods based on distribution type, without requiring separate implementations

for different inference backends or custom dispatch methods. The package integrates natively

with Turing.jl and other Julia PPLs, eliminating the need for language-specific implementations.

It uses the SciML ecosystem for solving numerical integrals which works both when used as a

standalone package and within a Turing.jl model. In contrast, the Stan and R implementations

need to use different solvers with the Stan implementation having to be recast into an ODE in
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order to work within the Stan ecosystem. In addition to these scientific benefits the package can

make use of the standard Julia tools for unit testing, documentation, and benchmarking all of which

can be challenging in less full featured PPLs such as Stan. In addition to these scientific benefits,

the package can make use of the standard Julia software development tools for unit testing, and

documentation both of which can be challenging in less full-featured PPLs such as Stan.

Areas for future work include developing a cohesive epidemiology metapackage that provides domain-

specific abstractions for common IDM patterns whilst connecting to the broader Julia ecosystem.

Priority areas include standardised interfaces for model specification, parameter estimation, interven-

tion modelling, and real-time forecasting. Technical improvements needed include further reducing

compilation latency, expanding GPU support across the ecosystem, and developing IDM-specific

visualisation recipes alongside standardised benchmarks for IDM applications.

Julia represents a significant advance in scientific computing for IDM, offering a unique combination

of performance, expressiveness, and composability that addresses fundamental limitations of both

pipeline and monolithic modelling approaches. Whilst some challenges remain, the foundation

is set for a robust, maintainable, and efficient approach to infectious disease modelling that can

adapt to future computational and methodological advances. Action must be taken to provide the

necessary support for Julia adoption in the IDM community including composable, interoperable,

and performant tools, educational materials, and community engagement.
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